If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2-18d=0
a = 9; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·9·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*9}=\frac{0}{18} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*9}=\frac{36}{18} =2 $
| 1+3x+32=180 | | 14x12+1=x | | 2x-20=3x-90 | | 3x–7=2x+3= | | 3x–7=2x+3 | | 1x+10=5x-17 | | ((x^2-15)/x)^2-16(15-x^2/x)+28=0 | | 3f-81f²=0 | | 83.333=150+-2y | | 33+4x+1=90 | | 2x+10=10x-34 | | x-2/3+x/4=1/2 | | 3x+7+2x-8=180 | | 2x^2+45x-40=0 | | 2(x-45)=18 | | 4-x=-1x | | -3x+7=20` | | 6x-9=10x+3 | | 3√2x+5+3=0 | | n/120=4 | | 2(x+4)=7-(3x+x) | | 3x-(-15x)=0 | | -3x-1=2x+19 | | X+(2x-27)=180 | | -43-x=-7x+53 | | (2x+17)+x=180° | | 40=200+x/10 | | 4x+-5=30 | | 7r+15=3r+35 | | 30-3x=48 | | 6.75+3/8x=1311/4 | | -4n-44=-32 |